
Inferring the state of a double-auction market from
empirical high-frequency transaction data

Minh Khoa Nguyen

CCFEA
Computer Science Department

University of Essex

mknguy@essex.ac.uk

Neil Rayner

CCFEA
Computer Science Department

University of Essex

njwray@essex.ac.uk

Steve Phelps

CCFEA
Computer Science Department

University of Essex

sphelps@essex.ac.uk

ABSTRACT

Much research in the area of multi-agent systems has been

devoted to the analysis of trading agents in double-sided

electronic marketplaces. However, to date there is very little

empirical research validating these models against actual data

from real markets. As a first step towards a principled approach

to the calibration and validation of agent-based models of

financial markets, we introduce a method for inferring the state of

the order-book in a double-auction market from empirical

transaction data. We use this inferred state to produce high-

frequency time-series of the midpoint of the quote and the

corresponding returns. We demonstrate that our model produces

data that is consistent with well-known stylized facts of high-

frequency financial time series data.

Categories and Subject Descriptors

I.6.4 [Simulation and Modeling]: Model Validation and Analysis

General Terms

Algorithms, Measurement, Economics, Experimentation

Keywords

Continuous double auction, trading agents, agent-based modeling,

calibration.

1. INTRODUCTION & MOTIVATION
Much research in the area of multi-agent systems has been

devoted to the analysis of trading agents in double-sided

electronic marketplaces [10]. However, to date there is very little

empirical research validating these models of agent-based markets

against actual data from real agent-based markets. We believe

that empirical validation of models against actual financial time

series data represents a significant opportunity for the trading

agents research community: trading in the financial markets today

is almost entirely conducted electronically through automated

trading agents [8], and data on every transaction in the

marketplace is obtainable from the major financial exchanges [e.g.

LSE1, Eurex2] running to several terabytes per year per asset.

1http://www.londonstockexchange.com/products-and-

services/reference-data/trade/trade-data.htm

Thus we have an unprecedented opportunity to calibrate and test

our models against actual data from one of the largest

implementations of a multi-agent system to date, viz. a financial

market.

One approach to validating agent-based models is to demonstrate

that they produce phenomena that are broadly consistent with

those observed in reality (in the vernacular of finance we say that

they reproduce the “stylized facts” of markets [3]), and that the

results of this analysis are insensitive to the settings of free

parameters [4]; that is, we demonstrate that the model is robust.

However, because agent-based models typically have very many

degrees of freedom, many attempts to demonstrate robustness fail

when performed rigorously. However, this does not necessarily

imply that we should abandon these models as unrealistic. Rather,

it suggests a need to systematically calibrate the free parameters

of the model based on observations of the real system.

Existing work has attempted to calibrate simple analytical models

against financial time series data sampled at a daily frequency [6].

However, we are interested in building agent-based models which

are able to explain phenomena such as long-memory in absolute

returns that are only observable at a high sampling frequency.

Many of these models take the form of agent-based simulations,

and thus they cannot be straightforwardly calibrated by the

standard methods since there is no closed-form likelihood

function to optimise. However, there is nevertheless a scientific

imperative to calibrate these models, and there is some early work

on calibrating simulation models we can draw upon [17].

One way of viewing the calibration exercise is as an attempt to

“reverse-engineer” a system by inferring the actual parameters of

an agent-based system from observations such as historical time-

series data. The challenge we face is that properties of the entities

in our model are not directly observable in the historical record.

For example, the raw transaction data available from the London

Stock Exchange LSE shows only the details of transactions such

as transaction-price and volume, and not details of the actual

agents in the market place such as the number of agents and the

strategies they are using. The (substantial) challenge is to infer

the latter from the former.

2http://deutscheboerse.com/dbag/dispatch/en/listcontent/gdb_navi

gation/mda/300_historical_market_data/30_eurex_hist_orderbo

ok/Eurex_Historical_Orderbook.htm

As a first step in this direction we present work which attempts to

infer the state of the auction (the “order-book”), from the

historical record of transaction data in the market.

Reconstructing the order-book is fundamental to understanding

the behaviour of real financial markets, since without the order-

book we do not even know how prices change in between the

daily closing price; the daily historical prices published in the

media are low-frequency samples of a signal that contains much

richer information when viewed at high-frequency. For example,

the May 6, 2010 “Flash Crash3” (during which the Dow Jones lost

10% of its value only to recover in minutes) would remain

invisible to anybody investigating historical prices sampled on a

daily basis; rather a high-frequency analysis of prices and returns

is required if we are to understand the behaviour of automated

trading agents which trade on an intra-day, and sometimes intra-

second basis. Our immediate focus is recovering the mid-point

price from high-frequency data. Since the mid-point of the

market quote depends on the state of the order-book [18] we must

infer the state of the state of the order-book at previous moments

in time in order to obtain the high-frequency price time-series.

The remainder of this paper is organized as following. The next

section reviews related work and compares it to our provided

software. Section 3 gives some background on the LSE and its

electronic trading platform SETS. Section 4 describes the

implementation. Section 5 is devoted to the analysis of the output

of the software and section 6 concludes.

2. REVIEW
There have been various papers reporting the reconstruction of

limit order books of the major exchanges. In [9] the NYSE is

rebuilt, in [2] the Paris Bourse, in [7] the Australian Stock

Exchange and in [5] the LSE historic order book was

reconstructed.

However, to the best of our knowledge there is no open-source or

publically-available commercial software to retrieve the historic

state of the order-book. Although all major financial exchanges

are double auction markets, their specific rules and order types

differ considerably, requiring for every order book rebuild a

specific market type data. While most exchanges provide this

data, it entails some fee and usually also some legal restriction on

its use, such as the dissemination of the raw data to a third party.

Due this restrictions the demand of and supply of such an order

book rebuild software is probably less desired. The closest

software we found to a historic LSE order book rebuild is called

eTradPlat4. It is a software designed to test trading strategies in an

historic LSE environment. However, in terms of retrieving and

exporting the historical order book it has some substantial

drawbacks. A summary comparison with our software can be

seen in Table 0.

3 http://en.wikipedia.org/wiki/Flash_crash

4 www.etradplat.com/

Table 0. Software Comparison Table

Comparison eTradePlat
Order Book

Rebuilder

Programming

Language

Java Microsoft SQL

Server, C#

Access to Source of

Simulation

No Yes

Access to All

Market Variables

No Yes

Explicit Printing

Function

No Yes

Open Source No Yes

The eTradPlat simulator [12] is not designed specifically to

extract information of the evolution of the order book but rather to

back-test prototype trading strategies. For this purpose the

eTradPlat simulator only provides an application programming

interface (API) for the user in which he or she can implement

trading strategies in question. Though the API allows the user to

retrieve some information from the actual order book in order to

interact with the market, he cannot access all information of the

market such as order details of an incoming market order, a

feature that is deliberately implemented in order to ensure the

realism of trading market interaction. For the latter reason the

trading strategy and the actual market simulator run on different

threads, meaning that they are not synchronized. Therefore

although the trader can interact with the market at any time, he

cannot govern the exact point in time of entry or exit.

In contrast, our software explicitly rebuilds the historical state of

the order book and produces data for modeling and validating

agent-based models.

3. GENERAL INFORMATION ON LSE &

SETS
In this section we give a brief overview of the LSE and its

electronic exchange – “Stock-exchange Electronic Trading

Service” (SETS). With a history5 of over 300 years the LSE is one

of the oldest stock exchanges in the world and has become one of

the most important centres of the global financial community.

LSE’s electronic trading service SETS is a fully electronic trading

platform in which the constituents of the FTSE All Share Index,

Exchange Trade Funds, Exchange Traded Commodities and other

important AIM and Irish securities are traded.

The trading mechanism6 is a double auction in which buy and sell

orders are matched in an order book. Traders can submit the

following type of orders (for details see Table 1):

5http://www.londonstockexchange.com/about-the-

exchange/company-overview/our-history/our-history.htm

6
http://www.londonstockexchange.com/products-and-

services/connectivity/tradelect/tradelect.htm

o Market order

o Limit order

o Day order

o Fill or kill

o All or none

o Immediate or cancel

o Stop

o Stop Limit

o Iceberg

The market itself operates in three different modes as depicted in

Figure 2.

Opening

Auction
Continuous Trading

Closing

Auction

7:50 8:00* 16:30 16:35*

Figure 2. LSE Operation Modes

The first stage between 7:50 and a random time between 8:00 and

8:00:30 (depicted as 8:00*) constitutes an opening auction in

which limit orders and market orders are entered and deleted on

the order book, however no execution is carried out. The purpose

of this stage is to discover an opening price for the real trading

period, which commences randomly after the opening auction.

The day ends with a closing auction at 16:30 and lasts for five

minutes plus a random time up to 30 seconds (depicted as 16:35*)

to ensure a high quality closing price of the day.

Table 1. LSE Order Types

Order Type Description

 Market order

Order to buy or sell at best available price

when the order is executed. Market orders

are more likely to be filled, however not a

specific price

 Limit order

An order that allows the trader to set the

limit price. A buy limit order has a

maximum price and respectively a sell

limit order has the minimum price, at

which the trader is willing to execute. It

does not guarantee execution, but if at

either pre-determined price or a better

price

Day order

An order that expires if it is not executed

within the given trading period

Fill or kill
An order that must be filled immediately,

otherwise be cancelled instantly

All or None

An order that is either executed completely

filled or not at all, in the latter however it

will not be cancelled as the Fill or Kill

Immediate or Cancel

An order that requires all or part of the

order to be executed immediately. The part

that is not executed will be cancelled

immediately

Stop

An order that becomes a market order once

the security has traded through the

designated stop price. Buy stops are

entered above current ask price. If the

price moves to or above the stop price, the

order becomes a market order and will be

executed at the current market price. This

may be higher or lower than the stop price.

Vice versa for sell stops.

Stop Limit

An order that becomes a limit order once

the security trades at the designated stop

price. A stop limit order will be executed

at a specific price or better, but only after a

given stop price has been reached or

passed. It is a combination of a stop order

and a limit order

Iceberg

A large single order that will be

successively divided into smaller parts,

usually by the use of an automated

program, for the purpose of hiding the

actual order quantity.

4. IMPLEMENTATION
In this section we give a brief description of the implementation.

The aim of the software is to reconstruct the historical state of the

auction from raw LSE transaction data in order to make inferences

about market variables such as mid price, gaps, depth and level

volumes or market impact of orders. These variables are defined

as follows:

1. mid price: mid price between best ask and bid in the

order book

2. gaps: difference of subsequent price levels in the book

3. depth: volume offered at best prices

4. level volume: volume offered at given price levels

5. market impact: mid price change caused by the

execution of an order

As it can be seen from the definitions, these variables cannot be

determined without knowing the actual state of the order book.

However, the state of the order book is not directly observable,

but must be inferred from the low-level transaction data.

Therefore the next subsection will describe the low-level

transaction data before we outline the procedure of inferring the

historic order book.

4.1 DATA
The LSE provides three sets of data:

o Order Details

o Order History

o Trade Reports

Order Details contains information of new orders entering

the order book. The most important attributes are: price, volume,

time and date, order code, buy or sell indicator. Order

History records the history of changes of each order. There are

five events that determine the history of an order:

1. the expiry of an order,

2. the deletion of an order,

3. amendments of its quantities,

4. a partial matching of an order,

5. a full matching of an order.

Once an order is matched (fully or partial) the order code of the

counter order is also recorded in Order History and the

details of the transaction are recorded in Trade Reports (all

trades occurring during the auction process are recorded in

Trade Reports). Note that any non-persistent orders, that is

orders such as market orders that are never queued on the order

book, are not explicitly recorded in Order Details or Order

History. However, their existence can be inferred from their

interaction with other orders in the book, as detailed below. For

further information on LSE data see [15].

4.2 Order Book Inference
Given the nature of the LSE data we can reconstruct the state of

the order book by simulating the auction. The general idea is to

first reconstruct the sequence of events that occurred in the market

from the raw transaction data, and to then run these events

through a simulation of the LSE continuous-double auction in

order to determine the outcome of these events on the state of the

order book. However, as discussed not all events are explicitly

recorded in the data and the missing events, and all non persistent

orders (market orders) need to be inferred first. As set by the LSE

trading rules market orders are instantly matched with orders in

the book and lead to an immediate transaction. Though market

orders are not explicitly recorded, the matching event (event 5 in

Section 4.1) is recorded and this gives us the information on the

time of the market order placement, and its order code (as the

counter order of the matching also recorded in the matching

event). By cross-referencing with the corresponding trade report,

we can then retrieve the exact volume of the market order. This

information completely describes the event of an incoming market

order.

Once having all events including the arrival of non persistent

orders and ordering them in the sequence of occurrence, this list

should reflect the exact evolution of the order book when

executed in the simulation. However in practice, one has to

account additionally for data errors, such as missing partial events

or conflicting variable values. E.g. occasionally one finds that an

entry of a market order has led to a transaction of certain size but

this change of volume for the matched order in the order book was

not reported or the total transaction size associated to a certain

order in the book exceeds its reported initial volume, leading to

negative, post transaction volume. A solution for the former is to

include the missing events, which can be detected by double

checking that every trade effects two orders, resulting in two

different order histories. The solution to the latter problem is to

overwrite the initial order volume with the corresponding total

transaction size. Including these procedures in the event

completion stage, that is when retrieving market orders, ensures a

complete, consistent and correct event list, which allows an

accurate rebuild of the historic order book.

Overall in order to reconstruct the historic auction process using

original LSE data our software performs the following steps:

1. retrieving information on all non persistent orders and

missing events from the original LSE data

2. correcting conflicting variable values

3. retrieving complete historic event list, with all events

sequenced by their actual occurrence

4. execution of the event list.

By following the event list step by step the software reproduces

the exact evolution of the auction and allows us to retrieve the

desired market variables mentioned above.

5. VALIDATION
In order to validate our approach we produce a high-frequency

time-series of the quote mid-point and take this as the market

price. We then calculate the corresponding time-series of returns

and test for several well-known stylized facts of high-frequency

financial data [3]:

1. absence of autocorrelation of returns

2. heavy tails of return distribution

3. long-memory in absolute returns

4. gain-loss asymmetry.

In particular 2 and 3 high are frequency phenomena (see [14],

[1]). The absence of autocorrelation of returns reflects the random

walk nature of empirical price processes where directions of price

changes are not predictable. Predictable however, are the

magnitude of price changes (absolute returns), which follow a

long memory process where large price changes tend to follow

large price changes, small price changes tend to be followed by

small price changes. Large price changes itself are “frequent”

events which is reflected in the heavy tails of the return

distribution. The latter has been found to be left-skewed, there are

more observable large draw downs in prices than upwards

movements.

5.1 Data
Our price sample time series (see Figure 3) is retrieved from the

order book reconstruction of a specific stock, viz: “Bluebay Asset

Management”, over the period of April and May 2008. As sample

interval we have chosen 5 min within the daily trading period

from 8.00 AM to 4.30 PM.

Figure 3. Price Time Series

 The price series consist of logarithmic mid prices. The

logarithmic mid price is defined as:

���� =
1
2

[log������� + log��������]

,where ����� and ������ the best ask and bid price available in

the market at time t. The logarithmic returns can be calculated as:

���� = ���� − ��� − 1�

where ���� and ��� − 1� are the logarithmic mid prices at time �,

� − 1 . The return time series can be seen in Figure 4.

Figure 4. Return Time Series

5.2 Results
Some basic summary statistics are reported in Table 2. Of

particular interest are kurtosis and skewness; the high value of the

kurtosis indicates a fat tailed return distribution, whereas the

negative skewness suggests an asymmetric return distribution

with more weight on negative values than positive ones.

Table 2. Summary Statistics for Returns

Mean Standard

Deviation

Kurtosis Skewness

-6.7x10-6 0.0030 15.5740 -0.4966

Both fat tail return distribution and gain loss asymmetry are well

known stylized facts of financial data [3].

Additionally to fat tail return distribution and gain loss

asymmetry, we have also checked for i) absence of

autocorrelation of returns ii) long memory in absolute returns. For

the latter we use the Lo R/S statistic [11], which is a statistic

specifically designed to detect long memory in time series.

Figure 5 shows the autocorrelation value of returns against

the lag used for calculating the autocorrelation and clearly

shows the absence of autocorrelation over 20 lags.

Figure 5. Autocorrelation of Returns

In the R/S statistics table (Table 3) we report the R/S statistic for

absolute returns calculated at four different lags. As can be seen

over a range of 50 min to 200 min (one lag corresponds to 5 min,

the lag interval of the given time series) we clearly detect long

memory in absolute returns.

Table 3. R/S Statistics Table

 Lags

 10 20 30 40

R/S

Statistics
2.3940 2.0755 1.9141 1.8132

Long

Memory7
Yes Yes Yes Yes

7
 If the R/S statistics exhibits the critical value of 1.747, the

process exhibits long memory.

6. CONCLUSION
We have described how the state of a continuous double-auction

can be inferred from empirical low-level transaction data from the

London Stock Exchange. By inferring the state of the auction as

it evolves over time we are able to reconstruct a high-frequency

time-series of asset prices and the corresponding returns. We

have validated our approach by testing that the resulting time-

series data are consistent with well-known stylized facts of high-

frequency financial time series.

This work is a first step towards the ambitious goal of inferring

the complete state of the market in terms of an agent-based model:

ultimately we hope to be able to recover properties of the agents

in the market as well as the state of the auction process. That is,

we would like to be able to calibrate the parameters of an agent-

based by fitting it against empirical data. The work presented

here is a small but fundamental step towards this goal.

7. REFERENCES
[1] Andersen,T. and Bollerslev, T. 1997. Intraday periodicity

and volatility persistence in financial markets. Journal of

Empirical Finance, 4(2-3):115–158.

[2] Auguy, M. and Le Saout, E. 1999. La liquidité cachée durant

la séance de cotation a la Bourse deParis: une étude du

règlement mensuel. Working Paper, U of Aix-Marseille III

and U of Paris I.

[3] Cont, R. 2001. Empirical properties of asset returns: stylized

facts andstatistical issues. Quantitative Finance, 1(2):223–

236.

[4] Fagiolo, G., Moneta, A. and Windrum, P. 2007. A Critical

Guide to Empirical Validation of Agent-Based Models in

Economics: Methodologies, Procedures, and Open Problems.

Computational Economics, 30(3):195–226.

[5] Farmer,J.D. 2005. The key role of liquidity fluctuations in

determining largeprice changes. Fluctuation and Noise

Letters, 5(2):209–216.

[6] Gilli, M. and Winker, P. 2003. A global optimization

heuristic for estimating agent based models. Computational

Statistics & Data Analysis, 42:299– 312.

[7] Hall, A. D. and Hautsch, N. 2005. Order aggressiveness and

order book dynamics. Empirical Economics, 30(4):973–

1005.

[8] Hendershott, T. 2003. Electronic Trading in Financial

Markets. IT

[9] Kavajecz, K. A. 1999. A Specialist's Quoted Depth and the

Limit Order Book. The Journal of Finance, 54: 747–771.

[10] Lebaron, B. 2006. Chapter 24 Agent-based Computational

Finance. Handbook of Computational Economics,

2(05):1187–1233.

[11] Lo, A. W. 1991. Long-Term Memory in Stock Market

Prices. Econometrica, 59(5):1279.

[12] Malik, A. 2007. eTradPlat. User Guide.

[13] Marks, R. E. 2007. Validating Simulation Models: A

General Framework and Four Applied Examples.

Computational Economics, 30(3):265–290.

[14] Müller, U., Dacorogna, M. and Pictet, O. 1996. Heavy tails

in high frequency financial data.

[15] Puddick, J. 2007. Historic Order Book Rebuild Data

Description and Guidance notes.

[16] Wagener, F. and Hommes, C. 2008. Complex Evolutionary

Systems in Behavioral Finance. Social Science Research

Network Working Paper Series.

[17] Werker, C. and Thomas, B. 2004. Empirical Calibration of

Simulation Models. Eindhoven University of Technology,

Eindhoven Centre for Innovation Studies, Tech. Rep.

[18] Wurman, P. R., Walsh, W. E., Wellman, M.P., Ave, B. and

Arbor, A. 1998.Flexible Double Auctions for Electronic

Commerce: Theory and Implementation. International

Journal of Decision Support Systems, 24:17–27.

