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ABSTRACT 

Much research in the area of multi-agent systems has been 

devoted to the analysis of trading agents in double-sided 

electronic marketplaces.  However, to date there is very little 

empirical research validating these models against actual data 

from real markets.  As a first step towards a principled approach 

to the calibration and validation of agent-based models of 

financial markets, we introduce a method for inferring the state of 

the order-book in a double-auction market from empirical 

transaction data.  We use this inferred state to produce high-

frequency time-series of the midpoint of the quote and the 

corresponding returns.  We demonstrate that our model produces 

data that is consistent with well-known stylized facts of high-

frequency financial time series data. 
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Keywords 
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1. INTRODUCTION & MOTIVATION 
Much research in the area of multi-agent systems has been 

devoted to the analysis of trading agents in double-sided 

electronic marketplaces [10].  However, to date there is very little 

empirical research validating these models of agent-based markets 

against actual data from real agent-based markets.  We believe 

that empirical validation of models against actual financial time 

series data represents a significant opportunity for the trading 

agents research community: trading in the financial markets today 

is almost entirely conducted electronically through automated 

trading agents [8], and data on every transaction in the 

marketplace is obtainable from the major financial exchanges [e.g. 

LSE1, Eurex2] running to several terabytes per year per asset.  

                                                                    
1http://www.londonstockexchange.com/products-and-

services/reference-data/trade/trade-data.htm 

Thus we have an unprecedented opportunity to calibrate and test 

our models against actual data from one of the largest 

implementations of a multi-agent system to date, viz. a financial 

market.   

One approach to validating agent-based models is to demonstrate 

that they produce phenomena that are broadly consistent with 

those observed in reality (in the vernacular of finance we say that 

they reproduce the “stylized facts” of markets [3]), and that the 

results of this analysis are insensitive to the settings of free 

parameters [4]; that is, we demonstrate that the model is robust.  

However, because agent-based models typically have very many 

degrees of freedom, many attempts to demonstrate robustness fail 

when performed rigorously.  However, this does not necessarily 

imply that we should abandon these models as unrealistic.  Rather, 

it suggests a need to systematically calibrate the free parameters 

of the model based on observations of the real system. 

Existing work has attempted to calibrate simple analytical models 

against financial time series data sampled at a daily frequency [6].  

However, we are interested in building agent-based models which 

are able to explain phenomena such as long-memory in absolute 

returns that are only observable at a high sampling frequency.  

Many of these models take the form of agent-based simulations, 

and thus they cannot be straightforwardly calibrated by the 

standard methods since there is no closed-form likelihood 

function to optimise.  However, there is nevertheless a scientific 

imperative to calibrate these models, and there is some early work 

on calibrating simulation models we can draw upon [17]. 

One way of viewing the calibration exercise is as an attempt to 

“reverse-engineer” a system by inferring the actual parameters of 

an agent-based system from observations such as historical time-

series data.  The challenge we face is that properties of the entities 

in our model are not directly observable in the historical record.  

For example, the raw transaction data available from the London 

Stock Exchange LSE shows only the details of transactions such 

as transaction-price and volume, and not details of the actual 

agents in the market place such as the number of agents and the 

strategies they are using.  The (substantial) challenge is to infer 

the latter from the former. 

                                                                                                                 
2http://deutscheboerse.com/dbag/dispatch/en/listcontent/gdb_navi

gation/mda/300_historical_market_data/30_eurex_hist_orderbo

ok/Eurex_Historical_Orderbook.htm 



As a first step in this direction we present work which attempts to 

infer the state of the auction (the “order-book”), from the 

historical record of transaction data in the market.   

Reconstructing the order-book is fundamental to understanding 

the behaviour of real financial markets, since without the order-

book we do not even know how prices change in between the 

daily closing price; the daily historical prices published in the 

media are low-frequency samples of a signal that contains much 

richer information when viewed at high-frequency. For example, 

the May 6, 2010 “Flash Crash3” (during which the Dow Jones lost 

10% of its value only to recover in minutes) would remain 

invisible to anybody investigating historical prices sampled on a 

daily basis; rather a high-frequency analysis of prices and returns 

is required if we are to understand the behaviour of automated 

trading agents which trade on an intra-day, and sometimes intra-

second basis.  Our immediate focus is recovering the mid-point 

price from high-frequency data.  Since the mid-point of the 

market quote depends on the state of the order-book [18] we must 

infer the state of the state of the order-book at previous moments 

in time in order to obtain the high-frequency price time-series. 

The remainder of this paper is organized as following. The next 

section reviews related work and compares it to our provided 

software. Section 3 gives some background on the LSE and its 

electronic trading platform SETS. Section 4 describes the 

implementation. Section 5 is devoted to the analysis of the output 

of the software and section 6 concludes.    

 

2. REVIEW 
There have been various papers reporting the reconstruction of 

limit order books of the major exchanges. In [9] the NYSE is 

rebuilt, in [2] the Paris Bourse, in [7] the Australian Stock 

Exchange and in [5] the LSE historic order book was 

reconstructed.           

However, to the best of our knowledge there is no open-source or 

publically-available commercial software to retrieve the historic 

state of the order-book. Although all major financial exchanges 

are double auction markets, their specific rules and order types 

differ considerably, requiring for every order book rebuild a 

specific market type data. While most exchanges provide this 

data, it entails some fee and usually also some legal restriction on 

its use, such as the dissemination of the raw data to a third party. 

Due this restrictions the demand of and supply of such an order 

book rebuild software is probably less desired. The closest 

software we found to a historic LSE order book rebuild is called 

eTradPlat4. It is a software designed to test trading strategies in an 

historic LSE environment. However, in terms of retrieving and 

exporting the historical order book it has some substantial 

drawbacks.  A summary comparison with our software can be 

seen in Table 0.   

 

 

                                                                    
3 http://en.wikipedia.org/wiki/Flash_crash 

4 www.etradplat.com/ 

Table 0. Software Comparison Table 

Comparison eTradePlat 
Order Book 

Rebuilder 

Programming 

Language 

Java Microsoft SQL 

Server, C# 

Access to Source of 

Simulation 

No Yes 

Access to All 

Market Variables 

No Yes 

Explicit Printing 

Function 

No Yes 

Open Source No Yes 

 

 

The eTradPlat simulator [12] is not designed specifically to 

extract information of the evolution of the order book but rather to 

back-test prototype trading strategies. For this purpose the 

eTradPlat simulator only provides an application programming 

interface (API) for the user in which he or she can implement 

trading strategies in question. Though the API allows the user to 

retrieve some information from the actual order book in order to 

interact with the market, he cannot access all information of the 

market such as order details of an incoming market order, a 

feature that is deliberately implemented in order to ensure the 

realism of trading market interaction. For the latter reason the 

trading strategy and the actual market simulator run on different 

threads, meaning that they are not synchronized. Therefore 

although the trader can interact with the market at any time, he 

cannot govern the exact point in time of entry or exit.   

In contrast, our software explicitly rebuilds the historical state of 

the order book and produces data for modeling and validating 

agent-based models.  

 

3. GENERAL INFORMATION ON LSE & 

SETS 
In this section we give a brief overview of the LSE and its 

electronic exchange – “Stock-exchange Electronic Trading 

Service” (SETS). With a history5 of over 300 years the LSE is one 

of the oldest stock exchanges in the world and has become one of 

the most important centres of the global financial community. 

LSE’s electronic trading service SETS is a fully electronic trading 

platform in which the constituents of the FTSE All Share Index, 

Exchange Trade Funds, Exchange Traded Commodities and other 

important AIM and Irish securities are traded.  

The trading mechanism6 is a double auction in which buy and sell 

orders are matched in an order book. Traders can submit the 

following type of orders (for details see Table 1):  

                                                                    
5http://www.londonstockexchange.com/about-the-

exchange/company-overview/our-history/our-history.htm 

6
http://www.londonstockexchange.com/products-and-

services/connectivity/tradelect/tradelect.htm 



o Market order 

o Limit order   

o Day order 

o Fill or kill 

o All or none 

o Immediate or cancel 

o Stop   

o Stop Limit 

o Iceberg 

The market itself operates in three different modes as depicted in 

Figure 2. 

  

Opening 

Auction 
Continuous Trading 

Closing 

Auction 

   

7:50              8:00*               16:30          16:35* 

Figure 2. LSE Operation Modes 

 

The first stage between 7:50 and a random time between 8:00 and 

8:00:30 (depicted as 8:00*) constitutes an opening auction in 

which limit orders and market orders are entered and deleted on 

the order book, however no execution is carried out. The purpose 

of this stage is to discover an opening price for the real trading 

period, which commences randomly after the opening auction. 

The day ends with a closing auction at 16:30 and lasts for five 

minutes plus a random time up to 30 seconds (depicted as 16:35*) 

to ensure a high quality closing price of the day.  

  

Table 1. LSE Order Types  

Order Type Description 

 Market order 

Order to buy or sell at best available price 

when the order is executed. Market orders 

are more likely to be filled, however not a  

specific price 

 Limit order  

An order that allows the trader to set the 

limit price.  A buy limit order has a 

maximum price and respectively a sell 

limit order has the minimum price, at 

which the trader is willing to execute.  It 

does not guarantee execution, but if at 

either pre-determined price or a better 

price 

Day order 

 

An order that expires if it is not executed 

within the given trading period 

Fill or kill 
An order that must be filled immediately, 

otherwise be cancelled instantly 

All or None 

An order that is either executed completely 

filled or not at all, in the latter however it 

will not be cancelled as the Fill or Kill 

Immediate or Cancel 

An order that requires all or part of the 

order to be executed immediately. The part 

that is not executed will be cancelled 

immediately 

Stop 

An order that becomes a market order once 

the security has traded through the 

designated stop price. Buy stops are 

entered above current ask price. If the 

price moves to or above the stop price, the 

order becomes a market order and will be 

executed at the current market price. This 

may be higher or lower than the stop price. 

Vice versa for sell stops. 

Stop Limit 

An order that becomes a limit order once 

the security trades at the designated stop 

price. A stop limit order will be executed 

at a specific price or better, but only after a 

given stop price has been reached or 

passed. It is a combination of a stop order 

and a limit order 

Iceberg 

A large single order that will be 

successively divided into smaller parts, 

usually by the use of an automated 

program, for the purpose of hiding the 

actual order quantity. 

 

 

4. IMPLEMENTATION 
In this section we give a brief description of the implementation. 

The aim of the software is to reconstruct the historical state of the 

auction from raw LSE transaction data in order to make inferences 

about market variables such as mid price, gaps, depth and level 

volumes or market impact of orders.  These variables are defined 

as follows:  

1. mid price: mid price between best ask and bid in the 

order book 

2. gaps: difference of subsequent price levels in the book 

3. depth: volume offered at best prices 

4. level volume: volume offered at given price levels 

5. market impact: mid price change caused by the 

execution of an order 

As it can be seen from the definitions, these variables cannot be 

determined without knowing the actual state of the order book. 

However, the state of the order book is not directly observable, 

but must be inferred from the low-level transaction data. 



Therefore the next subsection will describe the low-level 

transaction data before we outline the procedure of inferring the 

historic order book.  

4.1 DATA 
The LSE provides three sets of data: 

o Order Details 

o Order History  

o Trade Reports 

Order Details contains information of new orders entering 

the order book. The most important attributes are: price, volume, 

time and date, order code, buy or sell indicator. Order 

History records the history of changes of each order. There are 

five events that determine the history of an order: 

1. the expiry of an order, 

2. the deletion of an order,  

3. amendments of its quantities,  

4. a partial matching of an order,  

5. a full matching of an order. 

Once an order is matched (fully or partial) the order code of the 

counter order is also recorded in Order History and the 

details of the transaction are recorded in Trade Reports (all 

trades occurring during the auction process are recorded in 

Trade Reports). Note that any non-persistent orders, that is 

orders such as market orders that are never queued on the order 

book, are not explicitly recorded in Order Details or Order 

History. However, their existence can be inferred from their 

interaction with other orders in the book, as detailed below. For 

further information on LSE data see [15]. 

4.2 Order Book Inference 
Given the nature of the LSE data we can reconstruct the state of 

the order book by simulating the auction.  The general idea is to 

first reconstruct the sequence of events that occurred in the market 

from the raw transaction data, and to then run these events 

through a simulation of the LSE continuous-double auction in 

order to determine the outcome of these events on the state of the 

order book. However, as discussed not all events are explicitly 

recorded in the data and the missing events, and all non persistent 

orders (market orders) need to be inferred first. As set by the LSE 

trading rules market orders are instantly matched with orders in 

the book and lead to an immediate transaction. Though market 

orders are not explicitly recorded, the matching event (event 5 in 

Section 4.1) is recorded and this gives us the information on the 

time of the market order placement, and its order code (as the 

counter order of the matching also recorded in the matching 

event).  By cross-referencing with the corresponding trade report, 

we can then retrieve the exact volume of the market order. This 

information completely describes the event of an incoming market 

order.  

Once having all events including the arrival of non persistent 

orders and ordering them in the sequence of occurrence, this list 

should reflect the exact evolution of the order book when 

executed in the simulation. However in practice, one has to 

account additionally for data errors, such as missing partial events 

or conflicting variable values. E.g. occasionally one finds that an 

entry of a market order has led to a transaction of certain size but 

this change of volume for the matched order in the order book was 

not reported or the total transaction size associated to a certain 

order in the book exceeds its reported initial volume, leading to 

negative, post transaction volume. A solution for the former is to 

include the missing events, which can be detected by double 

checking that every trade effects two orders, resulting in two 

different order histories. The solution to the latter problem is to 

overwrite the initial order volume with the corresponding total 

transaction size. Including these procedures in the event 

completion stage, that is when retrieving market orders, ensures a 

complete, consistent and correct event list, which allows an 

accurate rebuild of the historic order book.  

Overall in order to reconstruct the historic auction process using 

original LSE data our software performs the following steps:  

1. retrieving information on all non persistent orders and 

missing events from the original LSE data 

2. correcting conflicting variable values 

3. retrieving complete historic event list, with all events 

sequenced by their actual occurrence 

4. execution of the event list. 

 

By following the event list step by step the software reproduces 

the exact evolution of the auction and allows us to retrieve the 

desired market variables mentioned above.  

5. VALIDATION 
In order to validate our approach we produce a high-frequency 

time-series of the quote mid-point and take this as the market 

price.  We then calculate the corresponding time-series of returns 

and test for several well-known stylized facts of high-frequency 

financial data [3]: 

1. absence of autocorrelation of returns 

2. heavy tails of return distribution   

3. long-memory in absolute returns   

4. gain-loss asymmetry. 

In particular 2 and 3 high are frequency phenomena (see [14], 

[1]). The absence of autocorrelation of returns reflects the random 

walk nature of empirical price processes where directions of price 

changes are not predictable. Predictable however, are the 

magnitude of price changes (absolute returns), which follow a 

long memory process where large price changes tend to follow 

large price changes, small price changes tend  to be followed by 

small price changes. Large price changes itself are “frequent” 

events which is reflected in the heavy tails of the return 

distribution. The latter has been found to be left-skewed, there are 

more observable large draw downs in prices than upwards 

movements.         

5.1 Data 
Our price sample time series (see Figure 3) is retrieved from the 

order book reconstruction of a specific stock, viz: “Bluebay Asset 

Management”, over the period of April and May 2008. As sample 

interval we have chosen 5 min within the daily trading period 

from 8.00 AM to 4.30 PM. 



  

Figure 3. Price Time Series 

 

 The price series consist of logarithmic mid prices. The 

logarithmic mid price is defined as: 

���� =
1
2

[log������� + log��������] 

,where ����� and ������ the best ask and bid price available in 

the market at time t. The logarithmic returns can be calculated as:  

���� = ���� −  ��� − 1� 

where ���� and ��� − 1� are the logarithmic mid prices at time  �, 

� − 1 . The return time series can be seen in Figure 4. 

 

 

Figure 4. Return Time Series 

 

5.2 Results 
Some basic summary statistics are reported in Table 2. Of 

particular interest are kurtosis and skewness; the high value of the 

kurtosis indicates a fat tailed return distribution, whereas the 

negative skewness suggests an asymmetric return distribution 

with more weight on negative values than positive ones. 

 

Table 2. Summary Statistics for Returns 

Mean Standard 

Deviation 

Kurtosis Skewness 

-6.7x10-6 0.0030 15.5740 -0.4966 

 

Both fat tail return distribution and gain loss asymmetry are well 

known stylized facts of financial data [3]. 

Additionally to fat tail return distribution and gain loss 

asymmetry, we have also checked for i) absence of 

autocorrelation of returns ii) long memory in absolute returns. For 

the latter we use the Lo R/S statistic [11], which is a statistic 

specifically designed to detect long memory in time series. 

Figure 5 shows the autocorrelation value of returns against 

the lag used for calculating the autocorrelation and clearly 

shows the absence of   autocorrelation over 20 lags.  

 

 

Figure 5. Autocorrelation of Returns  

In the R/S statistics table (Table 3) we report the R/S statistic for 

absolute returns calculated at four different lags. As can be seen 

over a range of 50 min to 200 min (one lag corresponds to 5 min, 

the lag interval of the given time series) we clearly detect long 

memory in absolute returns. 

 

Table 3. R/S Statistics Table  

 Lags 

 10 20 30 40 

R/S 

Statistics 
2.3940 2.0755 1.9141 1.8132 

Long 

Memory7 
Yes Yes Yes Yes 

                                                                    
7
 If the R/S statistics exhibits the critical value of 1.747, the 

process exhibits long memory.  

 



6. CONCLUSION 
We have described how the state of a continuous double-auction 

can be inferred from empirical low-level transaction data from the 

London Stock Exchange.  By inferring the state of the auction as 

it evolves over time we are able to reconstruct a high-frequency 

time-series of asset prices and the corresponding returns.  We 

have validated our approach by testing that the resulting time-

series data are consistent with well-known stylized facts of high-

frequency financial time series.   

This work is a first step towards the ambitious goal of inferring 

the complete state of the market in terms of an agent-based model: 

ultimately we hope to be able to recover properties of the agents 

in the market as well as the state of the auction process.  That is, 

we would like to be able to calibrate the parameters of an agent-

based by fitting it against empirical data.  The work presented 

here is a small but fundamental step towards this goal. 
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